
Tips
& Tricks

class procedure TfmAbout.ShowForm(pOwner: TComponent);
begin
 try
 with TfmAbout.Create(pOwner) do begin
 ShowModal;
 Free;
 end
 except
 ErrorMessage(’Something is wrong’);
 end;
end;
procedure TMainForm.AboutClick(Sender: TObject);
begin
 TfmAbout.ShowForm(self);
end;

➤ Listing 1

Cleaner, More Reliable Code
Many errors are due to programmers not properly
creating or initialising objects. This is the reason many
don’t like global variables. Delphi, however, by default
will auto-create your forms and these are global vari-
ables. When forms’ behaviour needs to change, for
example from modal to modeless, we have to change
the calling unit(s) and the unit which defines the form.
Another disadvantage of auto-create forms is that
every form is created, even if not all of them are used
during a particular session – if you have a lot of forms
starting the application can take a long time and uses
more memory than is strictly necessary. This is why I
create forms dynamically, using class methods.

The advantage of class methods is that they reduce
the amount of interaction between units. It’s not neces-
sary to create an instance in the calling unit. See the
example in Listing 1. If we want to use another About
form with a different name then we only have to change
the call and the uses clause in the main form. All the
other things which are specific to the About form are
defined and used only in the About form’s unit, thereby
making the application less error prone.

At my company we often show forms as modeless,
for example the About form. All we have to do is change
the class procedure and add the FormClose method
(action := caFree), the code in the main form remains
the same. However, if the form was auto-created, the
global variable in the About unit will become useless
and all calls to the About form will need to be changed.

Contributed by Stephan Westen, SWesten@SIG.NL

Managing Stored Procedures
Steve Troxell has shown us how to use stored proce-
dures in the client/server environment, but how do we
install them with Delphi? I don’t want to use ISQL or

similar tools from the database server vendor to install
the procedures on the server. Also I don’t want to write
the following code for each procedure:

CONNECT ...
DROP PROCEDURE ...
CREATE PROCEDURE ...

I solved this problem by creating a subdirectory called
SQL underneath the directory where the application
resides. In this subdirectory I place all the stored
procedure scripts (with the extension .SQL).

Listing 2 shows the SQL for the NextNoGet procedure,
placed in the file NEXTNOGET.SQL. In Listing 3 (over
the page) you see the procedure CheckProcedures,
which retrieves all the stored procedure names into
the aProcs stringlist for the given database. After this it
scans all the .SQL files in the SQL subdirectory with the
FindFirst and FindNext functions. For every SQL script
found, the procedure UpdateSQL is called.

After this the name of the file is checked against all
the installed procedures, if the procedure already ex-
ists it is removed with the DROP PROCEDURE statement.
The TQuery object we need for this is created on the fly.

Note that the TQuery.ParamCheck property is set to
False. Without doing this we can’t installed any stored
procedure using the : character, as most do. The : char
is a parameter and Delphi will try to replace the pa-
rameter with a value. If you try to install a stored
procedure with the DataBase Explorer and get an
invalid token ? value this indicates that Borland have
not set the property correctly.

Finally, the SQL script is loaded into the SQL property
and the query is executed. Now the stored procedure
is installed or upgraded!

The call to CheckProcedures should be hidden for
normal users and only visible for the system adminis-
trator who needs to update a procedure. All s/he has
to do is edit the scripts in the SQL directory and do a
call to the CheckProcedures method. No need for WISQL,
DBEXPLORER or DataBase Desktop.

Contributed by Stefan Boether,
CompuServe 100023,275

CREATE PROCEDURE NextNoGet(aTable CHAR(20))
RETURNS(aNextNo INTEGER)
AS
BEGIN
 SELECT Number FROM NEXTNO_BP
 WHERE Id = :aTable
 INTO :aNextNo;
 IF (aNextNo IS NULL) THEN
 BEGIN
 INSERT INTO NEXTNO_BP(Id, Number) VALUES(:aTable, 2);
 aNextNo = 1;
 END
 ELSE
 BEGIN
 UPDATE NEXTNO_BP SET Number = Number + 1
 WHERE Id = :aTable;
 aNextNo = aNextNo + 1;
 END
END

➤ Listing 2

58 The Delphi Magazine Issue 20

Re-Opening Closed Datasets
In some cases you may want to close one or all data-
bases for a short time and then re-open them than with
all the dependent tables and queries. That can be a
problem because the Active property does not auto-
matically remember its state. However, we can re-open
the datasets with the code shown in Listing 4. It inserts
all active datasets in a TList before closing the

database and dropping the connections of the current
session. After this you have nothing open and can do
the stuff you want, then you can re-open the database.
The dependent datasets are then re-activated.

Contributed by Stefan Boether

Table Cloning
Have you ever wanted a second table handle for access-
ing another record in the same table? For example to
duplicate a record. I use the code shown in Listing 5 to
do the job: it creates a table object on the fly using the
properties from a source table. The table is then
opened and positioned on the same record as the
source table. Don’t forget to dispose the returned table
with Free after a call to CloneTable.

Contributed by Stefan Boether

BDE Paradox Driver Bug
In the work of converting an update program from the
16-bit protected mode Paradox Engine for DOS to the
32-bit Borland Database Engoine (BDE), I discovered a
bug in the BDE Paradox driver. It seems that because
of a bug in the implementation of the DbiTranslateRe-
cordStructure function, you cannot create a Paradox
table with a Blob field of size 0 using the VCL TTable
component. I mananged to come up with a work-
around by modifying the implementation of the
TTable.CreateTable method.

The 16-bit version of the BDE also has this same
problem, but the TableType property of TTable must be
manually set to ttParadox for it to appear. It seems to
be another bug that causes GetDriverTypeName to return
nil instead of PARADOX. This makes DbiTranslateRecord-
Structure simply copy the logical record onto the
physical record instead of actually converting it.

This bug affects the following released BDE versions:
BDE32 3.12, BDE32 3.5 and BDE16 2.51, and Delphi
versions 1 and 2.

To re-create the bug, create a new application, drop
a button and a memo on the main form, then add the
code in Listing 6 to the Click event of the button.

Now run the application and press the button. You
will see in the memo that the size of the Blob field in
the table that was created is 1, not 0 as we intended.
This can also be verified by using the Database
Explorer and seeing that the size and physical size for
the blob field is 1 and 11, respectively, not 0 and 10 as
we intended.

function ExtractName(const Filename: String): String;
{ from my XProcs library }
var aExt : String;
 aPos : Integer;
begin
 aExt := ExtractFileExt(Filename);
 Result := ExtractFileName(Filename);
 if aExt <> ’’ then begin
 aPos:=Pos(aExt,Result);
 if aPos>0 then Delete(Result,aPos,Length(aExt));
 end;
end;
procedure CheckProcedures(aDb: TDataBase);
var
 aPath : String;
 aSearch : TSearchRec;
 aResult : Integer;
 aProcs : TStringList;
 procedure UpdateSql(const aFile: String);
 var aProc: String;
 i: Integer;
 begin
 if FileExists(aFile) then begin
 aProc:=ExtractName(aFile);
 with TQuery.Create(nil) do
 try
 DataBaseName := aDb.DataBaseName;
 if aProcs.Find(aProc,i) then begin
 SQL.Add(Format(’DROP PROCEDURE %s’,[aProc]));
 ExeSQL;
 end;
 ParamCheck := False;
 SQL.LoadFromFile(aFile);
 ExecSQL;
 finally
 Free;
 end;
 end;
 end;
begin
 aPath := ExtractFilePath(ParamStr(0))+’sql\’;
 aProcs := TStringList.Create;
 try
 aProcs.Sorted := True;
 Session.GetStoredProcNames(aDb.DataBaseName, aProcs);
 aResult := FindFirst(aPath+’*.sql’,faAnyFile,aSearch);
 while aResult = 0 do begin
 UpdateSQL(aPath+aSearch.Name);
 aResult := FindNext(aSearch);
 end;
 FindClose(aSearch);
 finally
 aProcs.Free;
 end;
end;

➤ Listing 3

var
 aOpenList: TList;
 j: Integer;
begin
 aOpenList:=TList.Create;
 try
 with Session do for i:= 0 to DatabaseCount - 1 do begin
 for j:=0 to Databases[i].DataSetCount-1 do
 if DataBases[i].DataSet[i].Active then
 aOpenList.Add(Pointer(DataBases[i].DataSet[i]));
 Databases[I].close;
 DropConnections;
 end;

 for j:=0 to aOpenList.Count-1 do
 TDbDataSet(aOpenList[j]).Open;
 finally
 aOpenList.Free;
 end;
end;

➤ Listing 4

function CloneTable(aTable: TTable): TTable;
begin
 Result:=TTable.Create(nil);
 with Result do begin
 DataBaseName:=aTable.DataBaseName;
 TableName:=aTable.TableName;
 IndexFieldNames:=aTable.IndexFieldNames;
 Open;
 GotoCurrent(aTable);
 end;
end;

➤ Listing 5

60 The Delphi Magazine Issue 20

For the 16-bit BDE, you can get around the bug by
relying on another bug... Simply make sure TableType is
ttDefault (the default). Then use .DB as the extension
of the TableName property to signal that this should be
a Paradox database. To solve the problem for all cases,
follow the guidelines below.

For the 32-bit BDE, the only way I have found to fix
this (other than calling the DBI functions directly) is to
modify the implementation of the TTable.CreateTable
method found in the SOURCE\VCL directory. At line
1790, insert the code shown in Listing 7 (line 1338 for
Delphi 1). The first and the last statements are taken
from the original source so that you know where to
insert the code.

This is a quick-and-dirty fix, but it does work. The
code first checks to see if the we are in fact using the
Paradox driver. Then it loops through all the logical
fields in the FieldDescs array. If it finds a Blob field that
has a logical size of 0, it changes the correspondig
physical field in the TableDesc.pFLDDesc array so that
the iLen and iUnits1 fields are set correctly.

If you do not want to modify the VCL source, you can
create your own TTable descendant component that
implements this corrected CreateTable. Note that this
would be a static replacement rather than a virtual
override: this means that any code that calls the old

procedure TForm1.Button1Click(Sender: TObject);
var Table: TTable;
begin
 Table := TTable.Create(Self);
 try
 with Table do begin
 Table.DatabaseName := ’C:\’;
 Table.TableType := ttParadox;
 Table.TableName := ’TestIt.DB’;
 Table.FieldDefs.Add(’Blob’, ftBlob, 0, false);
 Table.CreateTable;
 Table.Open;
 Memo1.Lines.Add(Format(’Blob.Size = %d’,
 [Table.FieldByName(’Blob’).Size]));
 end;
 finally
 Table.Free;
 end;
end;

➤ Listing 6

Check(DbiTranslateRecordStructure(nil, iFldCount,
 FieldDescs, GetDriverTypeName(DriverTypeName),
 PSQLLName, pFLDDesc, False));
{$DEFINE Fix_Paradox_ZeroSizeBlob_Bug}
{$IFDEF Fix_Paradox_ZeroSizeBlob_Bug}
 { Correct a bug in the Paradox driver. This enables us
 to have blob fields that use zero extra bytes in the
 record structure. }
 if StrComp(DriverTypeName, ’PARADOX’) = 0 then
 for I := 0 to iFldCount-1 do
 with PFieldDescList(FieldDescs)^[I] do
 if (iFldType = fldBLOB) and (iUnits1 = 0) then
 with PFieldDescList(TableDesc.pFLDDesc)^[I]
 do begin
 { The Paradox driver has a bug in that it sets
 all Blob fields of size 0 to size 1 }
 Dec(iLen, iUnits1);
 iUnits1 := 0;
 end;
{$ENDIF}
iIdxCount := IndexDefs.Count;

➤ Listing 7

TTable.CreateTable (like TBatchMove.Execute) would
still call the old code.

Contributed by Hallvard Vassbotn,
email: hallvard@falcon.no

Initialized Variables
In Listing 8 you can see some Delphi 2 language features
you may not have known about. The first new feature
is initialized variables. You can do the same thing with
variables that previously we could only do using typed
constantsL: set an initial value for a variable. In fact it
is probably best to use the new $J- compiler directive
to turn writable constants off and use the new initial-
ized variables instead. You are excused if you did not
know about this since it is mentioned only in the lan-
guage syntax diagrams and under the $J compiler di-
rective, with no code examples anywhere.

The second feature may be more of a curiousity than
a feature you wish to use. In C and C++ you always have
to add the parentheses to a procedure or function call,
even when there are no parameters, like test();. In
Pascal you used to get a syntax error if you wrote code
like that. It seems that Delphi 2 allows this calling
syntax. This may be a bug or the result of the shared
compiler backend with C++.

Contributed by Rick Hansen,
email rickh@artemisalliance.com

unit Unit1;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls;
type
 TForm1 = class(TForm)
 Label1: TLabel;
 Label2: TLabel;
 procedure FormCreate(Sender: TObject);
 private
 procedure Test;
 public
 end;
var
 Form1: TForm1;
 x : Integer = 10; // <<<<
 y : Integer = 99; // <<<<
implementation
{$R *.DFM}
procedure TForm1.Test(); // <<<<
begin
 label1.caption := ’x= ’ + inttostr(x);
 label2.caption := ’y= ’ + inttostr(y);
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 test(); // <<<<
end;
end.

➤ Listing 8

Thanks for the Tips, everyone – keep them
coming in! Just drop an email to the Editor on

DelphiMagazine@compuserve.com

62 The Delphi Magazine Issue 20

	Cleaner, More Reliable Code
	Managing Stored Procedures
	Re-Opening Closed Datasets
	Table Cloning
	BDE Paradox Driver Bug
	Initialized Variables

